Multiple positive solutions for a nonlinear Choquard equation with nonhomogeneous

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Solutions to a Magnetic Nonlinear Choquard Equation

We consider the stationary nonlinear magnetic Choquard equation (−i∇+ A(x))u+ V (x)u = (

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Multiple solutions of the quasi relativistic Choquard equation

Articles you may be interested in Multi-peak solution for nonlinear magnetic Choquard type equation Smooth soliton solutions of a new integrable equation by Qiao Optimal solution for the viscous nonlinear dispersive wave equation We prove existence of multiple solutions to the quasirelativistic Choquard equation with a scalar potential. C 2012 American Institute of Physics.

متن کامل

Uncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation

In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Equations & Applications

سال: 2017

ISSN: 1847-120X

DOI: 10.7153/dea-2017-09-38